算法训练I-简单

算法训练I-简单

挑了一些简单的算法题来做一些回顾,主要是LeetCode上面的Easy难度,各方面都有

主要使用Python来写算法

1. 两数之和

image-20250311124516327

比较笼统的能想到的两次循环,算法复杂度为O(n^2)

i按序遍历每一个元素,j从i位置往后按序遍历每个元素,计算和并比较,找出对应的i和就、

1
2
3
4
5
6
7
8
9
10
11
12
class Solution(object):
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
for i in range(len(nums)):
for j in range(i+1,len(nums)):
if nums[i]+nums[j]==target:
return i,j

再来看看我们的新算法:

1
2
3
4
5
6
7
8
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
hashtable = dict()
for i, num in enumerate(nums):
if target - num in hashtable:
return [hashtable[target - num], i]
hashtable[nums[i]] = i
return []

dict这种键值存储是使用哈希表实现的.

在访问过程中,我们先计算要访问数据的哈希,再使用哈希值直接访问哈希表的位置,如果能获取数据则说明data在哈希表中.所以在第二次遍历过程中,我们的时间复杂度下降到了O(1)

但由于使用了哈希表,我们的空间复杂度上升到了O(n)

所以我们的新算法的时间复杂度为O(n),空间复杂度为O(n).

27. 移除元素

image-20250311130507778

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution(object):
def removeElement(self, nums, val):
"""
:type nums: List[int]
:type val: int
:rtype: int
"""
k=0
for i in range(len(nums)):
if nums[i]!=val:
nums[k]=nums[i]
k+=1
return k

时间复杂度O(n) 空间复杂度O(1)

非常简单的思路,遍历nums数组,判断如果与目标值相等就跳过进行下一次处理,其实也是双指针的实现.

88. 合并两个有序数组

image-20250311131733638

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution(object):
def merge(self, nums1, m, nums2, n):
"""
:type nums1: List[int]
:type m: int
:type nums2: List[int]
:type n: int
:rtype: None Do not return anything, modify nums1 in-place instead.
"""
p1=m-1
p2=n-1
p=m+n-1
while p1>=0 and p2>=0:
if nums1[p1]<=nums2[p2]:
nums1[p]=nums2[p2]
p2-=1
else:
nums1[p]=nums1[p1]
p1-=1
p-=1
while p2>=0:
nums1[p]=nums2[p2]
p2-=1

我们倒序来遍历数组,最大值也倒着存.

每次遍历在p1和p2指向的位置,找到最大值存到p指向的位置,然后把最大值的指针和p的指针往后走一格,可以保证每次存入的都是两个数组中的最大值.

如果遍历完成p2还有剩余,倒序写入nums1数组;p1还有剩余则无需写入,因为本来就是对nums1数组的操作.

时间复杂度为O(n),空间复杂度为O(1).

20. 有效的括号

image-20250311134019655

经典栈题,但其实有一个绝妙的方法,我们先用栈来实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution(object):
def isValid(self, s):
"""
:type s: str
:rtype: bool
"""
stack = []
# 括号匹配的映射
mapping = {')': '(', '}': '{', ']': '['}

for char in s:
if char in mapping:
# 如果是右括号,检查栈顶是否有匹配的左括号
top_element = stack.pop() if stack else '#'
if top_element != mapping[char]:
return False
else:
# 如果是左括号,入栈
stack.append(char)

# 如果栈空,说明所有的括号都配对了
return not stack

很传统的做法,左括号入栈,右括号出栈并检测是否为左括号对应的括号,栈空说明全部完成配对.

时间复杂度和空间复杂度都是O(n).

还有一个绝妙的方法

1
2
3
4
5
6
7
8
9
10
11
class Solution(object):
def isValid(self, s):
"""
:type s: str
:rtype: bool
"""
while '{}' in s or '[]' in s or '()' in s:
s=s.replace('{}','')
s=s.replace('[]','')
s=s.replace('()','')
return s==''

乐,括号消消乐,虽然时间复杂度大概是O(n^2),空间复杂度为O(n),每次都会创建一个新的字符串对象.

203. 移除链表元素

image-20250311135238630

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution(object):
def removeElements(self, head, val):
"""
:type head: Optional[ListNode]
:type val: int
:rtype: Optional[ListNode]
"""
none_exist=ListNode(-1)
none_exist.next=head
pre=none_exist
cur=head
while cur:
if cur.val==val:#删除节点
pre.next=cur.next
else:
pre=cur
cur=cur.next
return none_exist.next

后面删除节点的逻辑我会写,想到怎么给出头节点的时候犯了难

后来看到可以创建一个虚拟节点来链到head,感觉很神奇

时间复杂度为O(n),空间复杂度为O(1)

还有一种比较简单的递归写法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution(object):
def removeElements(self, head, val):
"""
:type head: Optional[ListNode]
:type val: int
:rtype: Optional[ListNode]
"""
if not head:
return head
head.next=self.removeElements(head.next,val)
return head.next if head.val==val else head

时间复杂度为O(n),空间复杂度也为O(n)

遍历链表返回head.next直到链表尾进行嵌套返回

就是逻辑有点难想,递归算法也不是很推荐,容易导致栈满

26. 删除有序数组中的重复项

image-20250311143820609

1
2
3
4
5
6
7
8
9
10
11
12
class Solution(object):
def removeDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
unique=0
for repeat in range(len(nums)):
if nums[unique]!=nums[repeat]:
unique+=1
nums[unique]=nums[repeat]
return unique+1

双指针遍历.算法时间复杂度O(n),空间复杂度O(1),遍历找到不同数字时跳过.

206. 反转链表

image-20250311152911706

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution(object):
def reverseList(self, head):
"""
:type head: Optional[ListNode]
:rtype: Optional[ListNode]
"""
pre=None
cur=head
while cur:
tmp=cur.next
cur.next=pre
pre=cur
cur=tmp
return pre

运行的时候记录前驱节点pre、现有节点cur、后继节点tmp.

遍历到当前节点,通过cur.next获取到后继节点;

将当前节点指向前驱节点cur.next=pre,并将前驱节点更新为当前节点,当前节点更新为后继节点,来实现一次链表的反转.

时间复杂度为O(n),空间复杂度为O(1).

21. 合并两个有序链表

image-20250311153740011

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution(object):
def mergeTwoLists(self, list1, list2):
"""
:type list1: Optional[ListNode]
:type list2: Optional[ListNode]
:rtype: Optional[ListNode]
"""
head = ListNode(-1)
prev = head
while list1 and list2:
if list1.val<=list2.val:
prev.next=list1
list1=list1.next
else:
prev.next=list2
list2=list2.next
prev=prev.next
prev.next=list1 if list1 else list2
return head.next

由于头结点不确定,我们新建一个空链表节点作为head,遍历list1和list2取较小值加入链表,直到有一方被遍历完成后将剩余一方直接链入链表即可.

时间复杂度 O(n) 空间复杂度 O(1)

121. 买卖股票的最佳时机

image-20250311154616044

1
2
3
4
5
6
7
8
9
10
11
12
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
mint=prices[0]
maxt=0
for i in range(1,len(prices)):
mint=min(mint,prices[i])
maxt=max(maxt,prices[i]-mint)
return maxt

需要一点思考.

我们认为能获取的最大利润应该是遍历过程中,所有时刻能得到的最大利润的最大值

所以遍历记录最小值,再取所有时刻买入所得最大利润的最大值,遍历结束就是我们得到的最大利润maxt.

时间复杂度为O(n) 空间复杂度为 O(1)

13. 罗马数字转整数

image-20250311161430839

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution(object):
def romanToInt(self, s):
"""
:type s: str
:rtype: int
"""
mapdict={"I":1,"V":5,"X":10,"L":50,"C":100,"D":500,"M":1000}
specialdict={"IV":4,"IX":9,"XL":40,"XC":90,"CD":400,"CM":900}
substr=""
i=len(s)-1
value=0
while i>=0:
substr=s[i-1:i+1] #取i-1 和 i位置构成的两位子串
if i>0 and substr in specialdict:
value+=specialdict[substr]
i-=2
else:
value+=mapdict[s[i]]
i-=1
return value

有点绕啊,我们来分析一下逻辑

大概就是倒序遍历,匹配到符合规则的两位子串就计算值然后往前遍历,如果不符合子串规则就直接计算值并累加. 注意i>0,不然可能取子串会导致访问越界.

时间复杂度 O(n) 空间复杂度 O(1)

530. 二叉搜索树的最小绝对差

image-20250311172149041

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def getMinimumDifference(self, root):
"""
:type root: Optional[TreeNode]
:rtype: int
"""
res=[]
self.getMidTreeArray(root,res) #现在res是一个递增的数组
min=abs(res[0]-res[1])
for i in range(1,len(res)-1):
tmp=abs(res[i]-res[i+1])
if tmp < min: min = tmp
return min

def getMidTreeArray(self,root,res):
if not root:
return
self.getMidTreeArray(root.left,res)
res.append(root.val)
self.getMidTreeArray(root.right,res)

不难看出根据中序遍历我们可以得到一个升序数组,随后我们遍历取得最小差即可

时间复杂度O(n) 空间复杂度O(n) 我们多创建了一个res数组来辅助排序

69. x 的平方根

image-20250311183037928

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution(object):
def mySqrt(self, x):
"""
:type x: int
:rtype: int
"""
if x==0 or x==1:
return x
return self.AreaSearch(x,0,x)
def AreaSearch(self,x,left,right):
mid=(left+right)//2
if mid*mid<=x and (mid+1)*(mid+1)>x:
return mid
if mid*mid<x:
return self.AreaSearch(x,mid,right)
else:
return self.AreaSearch(x,left,mid)

时间复杂度O(log n) 空间复杂度O(log n)

二分查找递归查找平方根

70. 爬楼梯

image-20250311185247409

经典老题爬楼梯

1
2
3
4
5
6
7
8
9
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n==1:return 1
if n==2:return 2
return self.climbStairs(n-2)+self.climbStairs(n-1)

在最坏情况下,递归树的节点数大约是 2^n,即总共调用了 O(2^n) 次,时间复杂度为 O(2^n) ,坏

递归一下,结果发现会超时,算法效率还是不够高,原因是大量的重复计算,我们来优化一下,避免重复计算

1
2
3
4
5
6
7
8
9
10
11
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n<4:return n
result=[0,1,2,3]
for i in range(3,n):
result.append(result[i]+result[i-1])
return result[n]

时间复杂度O(n),空间复杂度O(n)

1047. 删除字符串中的所有相邻重复项

image-20250311191941087

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution(object):
def removeDuplicates(self, s):
"""
:type s: str
:rtype: str
"""
while True:
new_s = ""
head = 0
while head < len(s):
if head + 1 < len(s) and s[head] == s[head + 1]:
head += 2
continue
new_s += s[head]
head += 1
if new_s == s:
break
s = new_s
return s

时间复杂度O(n),空间复杂度O(n),检验到新字符串和原字符串相同则停止,但是对于太大的测试用例还是超时了.

怎么办?改!想起来刚好可以用栈来写一下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution(object):
def removeDuplicates(self, s):
"""
:type s: str
:rtype: str
"""
new_s=[]
for i in s:
if new_s==[]:
new_s.append(i)
continue
if new_s[-1]==i:
new_s.pop()
continue
new_s.append(i)
return "".join(new_s)

108. 将有序数组转换为二叉搜索树

image-20250311204004239

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def sortedArrayToBST(self, nums):
"""
:type nums: List[int]
:rtype: Optional[TreeNode]
"""
def TreeBuilder(left,right):
if left>right:
return None
mid = (left+right)//2
root = TreeNode(nums[mid])
root.left=TreeBuilder(left,mid-1)
root.right=TreeBuilder(mid+1,right)
return root
return TreeBuilder(0,len(nums)-1)

定义一个TreeBuilder辅助构建函数,用于帮助构建子树.

时间复杂度为 O(n) 空间复杂度为 O(log n)

125. 验证回文串

image-20250311205228915

回文串最速传说

1
2
3
4
5
6
7
8
class Solution(object):
def isPalindrome(self, s):
"""
:type s: str
:rtype: bool
"""
s = ''.join(filter(lambda c: c.isalnum(), s)).lower()
return s==s[::-1]

136. 只出现一次的数字

image-20250311211243495

1
2
3
4
5
6
7
8
9
10
class Solution(object):
def singleNumber(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
result=nums[0]
for i in range(1,len(nums)):
result=result^nums[i]
return result

非常优秀的思路,利用两次异或恢复原始值可以得到只出现一次的数字.

141. 环形链表

image-20250311212846348

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution(object):
def (self, list1, list2):
"""
:type list1: Optional[ListNode]
:type list2: Optional[ListNode]
:rtype: Optional[ListNode]
"""
dummy = ListNode(-1) # 创建一个虚拟头节点
prev = dummy # prev 指针用于追踪链表合并过程

while list1 and list2:
if list1.val <= list2.val:
prev.next = list1
list1 = list1.next
else:
prev.next = list2
list2 = list2.next
prev = prev.next # 移动 prev 指针

# 连接剩余部分(如果有)
prev.next = list1 if list1 else list2

return dummy.next # 返回合并后的链表

144. 二叉树的前序遍历

image-20250311213129548

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def preorderTraversal(self, root):
"""
:type root: Optional[TreeNode]
:rtype: List[int]
"""
res=[]
def Traversal(res,root):
if not root:return
res.append(root.val)
Traversal(res,root.left)
Traversal(res,root.right)
Traversal(res,root)
return res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def preorderTraversal(self, root):
"""
:type root: Optional[TreeNode]
:rtype: List[int]
"""
res=[]
stack=[]
stack.append(root)
while stack!=[]:
node = stack.pop()
if not node:
return []
if node:
res.append(node.val)
if(node.right):
stack.append(node.right)
if(node.left):
stack.append(node.left)
return res

递归+迭代

697. 数组的度

image-20250312125223088

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution(object):
def findShortestSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
dic={}
for i,num in enumerate(nums):
if num in dic:
dic[num][0]+=1 #记录数字出现的次数
dic[num][2]=i #更新数字最后一次出现的位置
else:
dic[num]=[1,i,i] #记录数字出现了一次,第一次和最后一次出现的位置
maxNum = minLen = 0
for count,left,right in dic.values():
length = right - left + 1
if count > maxNum:
maxNum = count
minLen = length
elif maxNum == count: #判断是否存在更小长度
if minLen > length:
minLen = length
return minLen

用哈希表来实现比较优雅

2703. 返回传递的参数的长度

image-20250312130107396

神秘的Javascript基础题

1
2
3
var argumentsLength = function(...args) {
return args.length
};

3099. 哈沙德数

image-20250312130132749

1
2
3
4
5
6
7
8
9
10
11
12
class Solution(object):
def sumOfTheDigitsOfHarshadNumber(self, x):
"""
:type x: int
:rtype: int
"""
s=str(x)
sum=0
for i in s:
sum +=int(i)
return sum if x%sum==0 else -1

705. 设计哈希集合

image-20250312132635646

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class MyHashSet(object):

def __init__(self):
self.data=[False]*1000001

def add(self, key):
"""
:type key: int
:rtype: None
"""
self.data[key]=True


def remove(self, key):
"""
:type key: int
:rtype: None
"""
self.data[key]=False

def contains(self, key):
"""
:type key: int
:rtype: bool
"""
return self.data[key]

哈希表实现起来比较复杂,稍后再看看

面试题 01.01. 判定字符是否唯一

image-20250312130745039

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution(object):
def isUnique(self, astr):
"""
:type astr: str
:rtype: bool
"""
dic={}
for char in astr:
if not char in dic:
dic[char]=1
else:
return False
return True
1
2
3
class Solution:
def isUnique(self, astr: str) -> bool:
return len(astr) == len(set(astr))

也可以灵活使用集合去重

面试题 03.04. 化栈为队

image-20250312133350215

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class MyQueue(object):

def __init__(self):
"""
Initialize your data structure here.
"""
self.pushs=[]
self.pops=[]


def push(self, x):
"""
Push element x to the back of queue.
:type x: int
:rtype: None
"""
self.pushs.append(x) #push压栈

def pop(self):
"""
Removes the element from in front of queue and returns that element.
:rtype: int
"""
if len(self.pops)==0: # 优先弹出pops栈栈顶元素,没有的话把push栈元素倒过去,push栈底会成为pop栈顶
for i in range(len(self.pushs)):
self.pops.append(self.pushs.pop())
return self.pops.pop()

def peek(self):
"""
Get the front element.
:rtype: int
"""
top = self.pop()
self.pops.append(top) #pop出来然后再return
return top


def empty(self):
"""
Returns whether the queue is empty.
:rtype: bool
"""
if len(self.pushs)==0 and len(self.pops)==0:
return True
else:
return False


# Your MyQueue object will be instantiated and called as such:
# obj = MyQueue()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.peek()
# param_4 = obj.empty()

350. 两个数组的交集 II

image-20250312135955907

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution(object):
def intersect(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
dic={}
res=[]
for i in nums1:
if i in dic:
dic[i]+=1
else:
dic[i]=1
for j in nums2:
if j in dic:
if dic[j]>0:
dic[j]-=1
res.append(j)
return res

392. 判断子序列

image-20250312170252232

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution(object):
def isSubsequence(self, s, t):
"""
:type s: str
:type t: str
:rtype: bool
"""
head1,head2=0,0
if s=="":return True
while head1!=len(s):
flag=False
while head2!=len(t):
if s[head1]==t[head2]:
flag=True
head2+=1
break
head2+=1
if not flag:
return False
head1+=1
return True

409. 最长回文串

image-20250312172526402

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: int
"""
dic={}
for i in s:
if i in dic:
dic[i]+=1
else:
dic[i]=1
length=0
flag=True
for key,value in enumerate(dic.values()):
if value%2==1 and flag: #第一个奇数直接加
flag=False
length+=value
else:
length+=value-value%2 #最近的偶数
return length

1378. 使用唯一标识码替换员工ID

image-20250312173919139

image-20250312173932086

SQL语句题,有点意思

SQL中JOIN相关子句是用于将两个或者多个表结合起来,进行相关操作。

Left JoinEmployeesEmployeeUNI拼起来,根据条件Employees.id = EmployeeUNI.id.

生成一张这样的表

id name id unique_id
1 Alice null null
7 Bob null null
11 Meir 11 2
90 Winston 90 3
3 Jonathan 3 1

Employees为主表,EmployeeUNI 为副表

选择EmployeeUNI.unique_id, Employees.name 作为所需字段

1
2
3
4
5
6
7
8
SELECT 
EmployeeUNI.unique_id, Employees.name
FROM
Employees
LEFT JOIN
EmployeeUNI
ON
Employees.id = EmployeeUNI.id;

最后的输出

unique_id name
null Alice
null Bob
2 Meir
3 Winston
1 Jonathan

509. 斐波那契数

image-20250312174451984

常规思路都是拿递归来做,但那样会有大量冗余计算,我们这里用一个简单一点的实现

1
2
3
4
5
6
7
8
9
10
11
class Solution(object):
def fib(self, n):
"""
:type n: int
:rtype: int
"""
if n<=1:return n
res=[0,1]
for i in range(2,n+1):
res.append(res[i-2]+res[i-1])
return res[n]

189. 轮转数组

image-20250312174514029

1
2
3
4
5
6
7
8
9
10
class Solution(object):
def rotate(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: None Do not return anything, modify nums in-place instead.
"""
n=len(nums)
k=k%n
nums[:]=nums[-k:]+nums[0:-k]