Pickle反序列化漏洞小结
Pickle反序列化漏洞小结
Ec3oPickle 反序列化漏洞小结
Pickle是一种栈语言,有不同的编写方式,基于一个轻量的PVM(Pickle Virtual Machine)进行工作.
序列化与反序列化
pickle模块在序列化和反序列化时使用__reduce__
方法来进行反序列化,在定义模块时取消定义即可.
pickle.dump()
pickle.load()
pickle.dumps()
pickle.loads()
其中dump方法用于把Python对象转换为可传输的二进制文件或字符串(dumps);load方法用于从文件或字符串(loads)中加载序列化的二进制Python对象.
漏洞的成因
Pickle在反序列化时会自动调用对象的__reduce__
方法从而导致远程代码执行及其他代码,常见利用有反弹shell,变量覆盖等.
Pickle协议版本
当前用于 pickling 的协议共有 5 种。使用的协议版本越高,读取生成的 pickle 所需的 Python 版本就要越新。
- v0 版协议是原始的“人类可读”协议,并且向后兼容早期版本的 Python。
- v1 版协议是较早的二进制格式,它也与早期版本的 Python 兼容。
- v2 版协议是在 Python 2.3 中引入的。它为存储 new-style class 提供了更高效的机制。欲了解有关第 2 版协议带来的改进,请参阅 PEP 307。
- v3 版协议添加于 Python 3.0。它具有对
bytes
对象的显式支持,且无法被 Python 2.x 打开。这是目前默认使用的协议,也是在要求与其他 Python 3 版本兼容时的推荐协议。 - v4 版协议添加于 Python 3.4。它支持存储非常大的对象,能存储更多种类的对象,还包括一些针对数据格式的优化。有关第 4 版协议带来改进的信息,请参阅 PEP 3154。
PVM的工作原理
pickle 实际上可以看作一种独立的语言,通过对 opcode
的编写可以进行 Python 代码执行、覆盖变量等操作。直接编写的 opcode
灵活性比使用 pickle 序列化生成的代码更高,并且有的代码不能通过 pickle 序列化得到(pickle 解析能力大于 pickle 生成能力)。
PVM 由以下三部分组成
- 指令处理器:从流中读取
opcode
和参数,并对其进行解释处理。重复这个动作,直到遇到。这个结束符后停止。 最终留在栈顶的值将被作为反序列化对象返回。 - stack:由 Python 的
list
实现,被用来临时存储数据、参数以及对象。 - memo:由 Python 的
dict
实现,为 PVM 的整个生命周期提供存储。
常见opcode一览表
指令 | 描述 | 具体写法 | 栈上的变化 |
---|---|---|---|
c | 获取一个全局对象或import一个模块 | c[module]\n[instance]\n | 获得的对象入栈 |
o | 寻找栈中的上一个MARK,以之间的第一个数据(必须为函数)为callable,第二个到第n个数据为参数,执行该函数(或实例化一个对象) | o | 这个过程中涉及到的数据都出栈,函数的返回值(或生成的对象)入栈 |
i | 相当于c和o的组合,先获取一个全局函数,然后寻找栈中的上一个MARK,并组合之间的数据为元组,以该元组为参数执行全局函数(或实例化一个对象) | i[module]\n[callable]\n | 这个过程中涉及到的数据都出栈,函数返回值(或生成的对象)入栈 |
N | 实例化一个None | N | 获得的对象入栈 |
S | 实例化一个字符串对象 | S’xxx’\n(也可以使用双引号、'等python字符串形式) | 获得的对象入栈 |
V | 实例化一个UNICODE字符串对象 | Vxxx\n | 获得的对象入栈 |
I | 实例化一个int对象 | Ixxx\n | 获得的对象入栈 |
F | 实例化一个float对象 | Fx.x\n | 获得的对象入栈 |
R | 选择栈上的第一个对象作为函数、第二个对象作为参数(第二个对象必须为元组),然后调用该函数 | R | 函数和参数出栈,函数的返回值入栈 |
. | 程序结束,栈顶的一个元素作为pickle.loads()的返回值 | . | 无 |
( | 向栈中压入一个MARK标记 | ( | MARK标记入栈 |
t | 寻找栈中的上一个MARK,并组合之间的数据为元组 | t | MARK标记以及被组合的数据出栈,获得的对象入栈 |
) | 向栈中直接压入一个空元组 | ) | 空元组入栈 |
l | 寻找栈中的上一个MARK,并组合之间的数据为列表 | l | MARK标记以及被组合的数据出栈,获得的对象入栈 |
] | 向栈中直接压入一个空列表 | ] | 空列表入栈 |
d | 寻找栈中的上一个MARK,并组合之间的数据为字典(数据必须有偶数个,即呈key-value对) | d | MARK标记以及被组合的数据出栈,获得的对象入栈 |
} | 向栈中直接压入一个空字典 | } | 空字典入栈 |
p | 将栈顶对象储存至memo_n | pn\n | 无 |
g | 将memo_n的对象压栈 | gn\n | 对象被压栈 |
0 | 丢弃栈顶对象 | 0 | 栈顶对象被丢弃 |
b | 使用栈中的第一个元素(储存多个属性名: 属性值的字典)对第二个元素(对象实例)进行属性设置 | b | 栈上第一个元素出栈 |
s | 将栈的第一个和第二个对象作为key-value对,添加或更新到栈的第三个对象(必须为列表或字典,列表以数字作为key)中 | s | 第一、二个元素出栈,第三个元素(列表或字典)添加新值或被更新 |
u | 寻找栈中的上一个MARK,组合之间的数据(数据必须有偶数个,即呈key-value对)并全部添加或更新到该MARK之前的一个元素(必须为字典)中 | u | MARK标记以及被组合的数据出栈,字典被更新 |
a | 将栈的第一个元素append到第二个元素(列表)中 | a | 栈顶元素出栈,第二个元素(列表)被更新 |
e | 寻找栈中的上一个MARK,组合之间的数据并extends到该MARK之前的一个元素(必须为列表)中 | e | MARK标记以及被组合的数据出栈,列表被更新 |
常见WAF绕过
绕过Unpickler.find_class()
类沙箱逃逸,尝试从其他类访问属性获取到对应类从而进行命令执行等操作,详见SSTI专题
绕过指令过滤
绕过R指令
1 | import pickle |
可以看到代码中过滤了R指令,字节码里不能存在R.实际上,如果没有R
指令,我们同样能够进行函数执行。有下面这样一个例子:
1 | opcode=b'''(c__main__ |
这段字节码向栈中压入了一个字典{"__setstate__":os.system}
,并执行b
字节码,,由于此时并没有__setstate__
,所以这里b字节码相当于执行了__dict__.update
,向对象的属性字典中添加了一对新的键值对。如果我们继续向栈中压入命令command,再次执行b
字节码时,由于已经有了__setstate__
,所以会将栈中字节码b
的前一个元素当作state
,执行__setstate__(state)
,也就是os.system(command)
。
绕过关键字过滤
[2022强网杯 crash]
1 | class User: |
原始opcode
1 | b'''capp |
使用V指令绕过
1 | b'''capp |
16进制编码绕过
1 | b'''capp |
对于已导入的模块,我们可以通过sys.modules['xxx']
来获取该模块,然后通过内置函数dir()来列出模块中的所有属性
1 | print(dir(sys.modules['admin'])) |
最终opcode
1 | opcode = b'''c__main__ |